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Abstract--The force acting on two particles covered with a porous layer which move at a finite relative 
velocity along the line of minimal separation was calculated. The fluid flow in the porous layer was 
modeled by the Brinkman equations. The force is found as the leading term of an asymptotic expansion 
valid when the gap between particles is much less than the smallest principal radius of its curvature. The 
solution has no singularity when the surfaces are almost in contact (i.e. the gel layers are touching), which 
differs from the case of smooth surfaces. 
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I N T R O D U C T I O N  

The slow motion of  solids in a viscous fluid has been considered by many authors (Goldman 
et al. 1967; O'Neil 1964; Dean & O'Neil 1963; Cox 1974). Goldman et al. (1967) applied 
lubrication theory to obtain approximate solutions for such motions. This theory was extended 
by Cox (1974) to find the forces and torques acting on any two smooth solid surfaces 
separated by a viscous fluid, the surfaces being such that if they were brought together the 
contact would occur at a single point only. The results are obtained as the leading terms of  an 
asymptotic expansion valid when the gap between the particles is much less than the smallest 
principal radius of  its curvature. The solution has a singularity when the particles are in 
contact. 

Experimental investigations (Churaev et al. 1981; Kim & Anderson 1989) have shown that some 
porous structures created, for example, by adsorbed or terminally attached polymers, exist on the 
solid surfaces of  many colloidal particles. Such porous layers could also be formed by the 
dissolution of  the particle surface itself in a leaching operation. The presence of  a porous layer on 
the surface, called a "gel layer", affects the hydrodynamic phenomena (Garvey et  al. 1975; Cohen 
et al. 1984). Fluid flow within a porous layer is often modeled by the Brinkman equation, which 
applies when inertial effects are negligible. 

In this paper lubrication theory is used to investigate the effects of  porous gel layers on the 
hydrodynamic interaction between two particles approaching each other in the direction of  the line 
connecting the points of  minimal separation. It is assumed that their contact m a y  occur only at 
a single point on the surface of  the gel layer and the gel layers do not deform. It is assumed that 
the density and other properties of  the gel layers do not depend on the distance from the particle 
surface. It is known (Cosgrove 1990) that the density of  the adsorbed layers of  some polymers is 
not uniform in the direction normal to the solid surface. Nevertheless, the solution obtained allows 
one to estimate the influence of  adsorbed polymer layers on the hydrodynamical behavior of  a 
colloid system. 

The force acting on the particles is found as the leading term of  an asymptotic expansion valid 
for a small gap between the particles. The solution obtained has no singularity at the point of  
contact. I f  the thickness of  the gel layer tends to zero the results reduce to those given by Cox 
(1974). 

tCurrent address: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, 
U.S.A. 
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STATEMENT OF THE PROBLEM 

Consider two particles covered with a gel layer of thickness ff suspended in a viscous fluid. It 
is assumed that the particles are approaching each other in the normal direction (figure 1). The 
Reynolds number (Re) is assumed to be so small that inertial effects may be neglected. The surfaces 
of the particles are W and W', respectively. The fluid, of viscosity r/, in the gap between the particles 
is incompressible. The objective is to find the viscous force acting on the surfaces of the moving 
particles as a result of their motion. Following the nomenclature of Cox (1974), we define the local 
Cartesian axes ()?~,)?2, )?3) with origin O, which lies on the surface W of one of the particles at the 
point of minimum separation of the surfaces. The axis )?3 is taken to be normal to the surface W 
and, hence, to the surface W' of the other particle. The axes )?! and )72 are tangential to the surface 
W and lie in the directions of the principal curvatures of the surface W at the point O. The surface 
W may be written for the small values of 7 = ()?| + )72) |/2 as 

)?3 = + o Ell 

where 

= 2R, 2-~2" [21 

/~, and R2 are the principal radii of curvature of the surface W at the point O; 
L = rain{R,, R2, S~, ~2 }, S, and ~2 are the principal radii of curvature of the surface W' at the point 
O'; O'(0, 0, a), a is the gap width between the solid surfaces of the particles (a 1> 26"). The surface 
W' may be written in the form 

)?3 = a + h2()?,, )?2) + 0 ~-5 , [3] 

where 

2/'cos 2 0 sin 2 0"~ ~ / 1 1 \  . ~2/'cos 2 0 sin 2 0'~ 
h2()?! )72)--)?|  ' k 2S, 2S2 )+ )?'x2t~-s~)s'nO cosO + x  ~-2-ff-~ +-2-~-2 ,}; [4] 

0 is the  angle between the principal axes of the curvature of W and W' at the point O'. 

Figure 1. The system geometry. 
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The fluid flow in the gap between the particles satisfies the Stokes equations 

M - e f t = 0  

and 
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[5] 

div fi = O, [6] 

where fi = (ul, t~2, t~3) and fi are the fluid velocity and pressure, respectively, related to the (xl, x2, x3) 
axis system; and tl is the fluid viscosity. The region of the porous layer may he defined as 

--~1 ~X3~--]~l+~ and a+nr2-6~<.~3~<a+t72.  [7] 

For analysis of  flow within a porous layer, we use the Brinkman equations 

~* A f t *  - e f t *  - k f i *  = O [8]  

and 

div fi* = O, [9] 

where fi* "* "* ~* fi* rl* = (141 , U 2 , U 3 ), and are the velocity, pressure and fluid viscosity within the porous 
layer; k is the hydrodynamic screening parameter which may be calculated using the Carman 
relation (Kim & Russel 1985), or another model (Anderson e t  al. 1991). All functions related to 
the porous layer are denoted with an asterisk, The no-slip boundary conditions at the walls W and 
W' are 

fi* =Or  on W [10] 

fi* = 1Cl2 on W', [11] 

and 

where CI~= (0, O,/.7~), i =  1,2. 
Continuity of the stress tensor 0 and the velocity field is assumed at the gel layer/fluid interface: 

O#nj = ~on2,~* • [12] 

here n is the unit normal to the surface W and 

fi = f i* .  [ 1 3 ]  

It is also assumed that the pressure tends to zero at infinity: 

p - -0 ,  ~-.  oo. [14] 

The task is to solve the set of  hydrodynamic equations [5], [6], [8] and [9] subject to the boundary 
conditions [10]-[14] for fi, p and fi*, p*; and then to compute the force of the hydrodynamic 
interaction between two particles covered with the porous layer. 

METHOD OF SOLUTION 

In order to solve the set of  hydrodynamic equations [5], [6], [8] and [9] subject to boundary 
conditions [10]-[14], it is convenient to use the following dimensionless variables (xl, x2, x3): 

,~, ,~2 '~3 
X l =  N / ~  ' X2 = ~ a a  ' v  x 3 = - - a  [15] 

With these definitions, the surface W becomes 

and the surface W" becomes 

x3 = --hi (xl, x2) + O(E) [16] 

x3 = 1 + h2 (x l ,  x2) + O(E), [17] 
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where the functions ht(Xl,X2) and h2(Xl, X2) are defined as 

x? x~ 
h, (x~, x2) = ~ 7 ,  + - -  

2R2 

and 

[181 

and 

1 ~ Ul U2 U3 
P = - - ,  ul = ~ - - ,  u2=E - ,  u 3 = - - ,  

Po Uo Uo uo 

fi = - - ,  li, = e - - ,  ti2 = e - - ,  li 3 = - - ,  
Po Uo Uo Uo 

= _ Uo r /L r/* U, Ug ( i = 1 , 2 ) ,  Po = u o = U 2 - U t ,  c t = - - ,  
Uo a:  ' q 

Rg=/~g Sg ( i = t , 2 ) ,  ? - ( 2 , + 2 2 )  '12 Z'  s '=T 

and 

= = - ,  r -  , [201 co , 3' a x / ~  

where u0 and P0 are the characteristic scales of the velocity and pressure. 
With the dimensionless variables ([15] and [20]), then [5] and [6] may be rewritten in the form: 

2 02 2 92 02 ~ 0p 
¢ ~-C7.2+¢ ~-Z-A+~-C52/ug----=0 ( i = 1  2), Oxl 0x2 0x3] Ox, 

02 0 2 9 2 ) 
E2 - Op ,2 ,2 Xl2q_ 0XI_I_~__X2 U3__~X3=0 

and 

OU l OU 2 OU 3 

The region of the porous layer takes the form: 

-hi <<. x3 <~ -h~ + ? and l + h2- y ~ x3 <~ l + h2. 

With the dimensionless variables, the Brinkman equations [8] and [9] become: 

( 92 02 02) 01 [~ O)2 
- -  ¢2  - -  lig ])2 rig = 0 (i = 1, 2), 

d Ox~ + Ox~ + ~ Ox, 
( 92 02 02) 0/~ '2(Z12 

~e 2 ¢ 2 ex--~! + e2 Ox---~ + ~ a3 0x3 ~ 2 a3 = 0 

&i I 8ff: &i3 

0x =°" 

The no-slip boundary conditions expressed in the dimensionless variables are 

5g=0 (i = 1,2) on W and W'~ 
5 3 = G o n  W and u 3 = U 2 o n  W'. J 

[211 

[22] 

[231 

[24] 

[25] 

[261 

[27] 

[281 

21"c0s2 0 sin2 0~ ( 1  l )  21"c0s2 0 sin2 0~ 
h2(x,,x:)=x,~--~l + 2szj+XlX2 ~ - ~  sinOcosO+x2~--~2 + - ~ t  ]. [19] 

Rg = Rg/L and & = Si/L (i = 1, 2) are the dimensionless principal radii of  curvature; and e = x/~/L 
is a parameter which is assumed to be very small. 

The following dimensionless variables and parameters will be used: 
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Continuity of the stress tensor and the velocity field on the porous layer]fluid interface may be 
written as 

o,sn s = o ~ n s, [29] 

where n = {xte/R~, x2~/R2, 1 + O(~)} is the unit normal to the surface W; o is the dimensionless 
stress tensor; and 

u, --- u* (i = 1, 2, 3). [30] 

The boundary condition for the pressure takes the form 

p ~ 0 ,  r~oo ,  [31] 

where r = (xj + x2) t/2. 
Assume that the velocity and pressure may be expanded in powers of the parameter E in the 

following form: 

u = E u,,', p = E p , " ,  ii = E a,,', ,6 -- E/~,,'.  [32] 
i i i i 

Consider only the leading terms of expansions [32], the terms of order 0(~) will be neglected 
(further, indices will be dropped). 

It is convenient to change variables to (Y~,Y2,Ya) and use the local variable ~ in the region of 
the porous layer: 

yl=xl,  y2=x2, y3=x3+h(xt,x2); ~= xa+h(xl'x2) [33] 

The surface W expressed in the new variables becomes 

y3=0  at ~ - 0  

and the surface W' becomes 

[34] 

and 

and [25]--[27] take the form 

where 

2{c°s20 sin 20 1 \ 
h ( y l , Y 2 ) = l "ll" Y l ~k'-'~ll "lL --~'~'2 d~- "~'~l ) 

( ~ )  s i n 0 c o s l  1 ~ -  Jc°s20 sin20 -~-~2 ) _  + Y, Y2 0 + y2~'-~'2 +-'~-+ . [ 3 6 ]  

Neglecting the terms of order O(Q, [21]--[23] take the form 

02 
dy'---~ u , -  ~ = 0 (i = 1, 2), [37] 

= o [38] tgx3 

Out du 2 Ous yjdu, Y2OU2 
~Yl + ~Y2 + ~Y3 + ~ ~Y3 + R-~ Oy"~ = 0; [39] 

02 ~2 ~p oj2 
O~'--'-Sai flZOx ' -~-Ta,=0 (i----1,2), [40] 

[411 

y3=h(yl,y2) at ~ --.h(yt'Y2)--, [35] 
Y 
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and 

&il &i2 &23 Yl &21 Y2 a~22 
7~yl+  7 ~y2 +-~-  + ~ ~ "  + R---2 0-~ =0,  [42] 

where c¢ 2 = ft. 
The boundary conditions on W and W' expressed in the new variables are 

a ,= 0 (i = l, 2), a3=U,  a t ¢ = 0 ]  

a i = 0 ( i = l , 2 ) ,  t/3 U 2 a t ~ = ~ I "  [43] 

Neglecting the terms of order O (E), from [30] and [29] it follows that at the porous layer/liquid 
interface the boundary conditions have the form 

p =p ,  [44] 

u,l,3=~ = a,l¢=,, u, lr3=~-~ = a,l~=~/~_, [45] 

and 

3 ota ¢3 or3 
~ y  u,l,3=~, = i N a ,  l~=,, ~-~y3 u&,~ =,,_~, = -~ N a,l¢ =,.,_,. [461 

The problem is thus reduced to solving [37]-[42] subject to boundary conditions [43]-[46]. 
From [38] and [41] it follows that the pressure within and outside the porous layer is a function 

of Yl and Y2. The solution of [40], which satisfies the no-slip condition [43] on IV, has the form 

t / i = 2 C ' s i n h ( - ~ ) + ( - ~ ) 2 ~ [ e x p ( - C ~ )  - 11 ( i =  1,2), [47] 

where C ~ is the constant obtained from the ~ integration and thus an arbitrary function of Yt and 
Y2. 

The solution of [37], obtained from the Y3 integration, has the form 

1 2dP  
ui = IY3 ~Yi + Aiy3 + Bi, [48] 

where the quantities A~=At(yl,y2) and B~=B~(yi,y2) are determined from the boundary 
conditions [45] and [46] with the result 

Op [49] Ai= CiF + G,  Bi = CiS +-~-~y Q, 

where 

(;) (;) ] (;) S = 2 s i n h  -2o~flcosh 09 , Q =  ~ exp - - 1  +½72+ co exp - . [50] 

Substituting the expressions for L/~ and z/2 given by [47] into [42] and integrating with respect to 
~, subject to the no-slip condition [43] on I4, one obtains 

~3= --7~( 7--'~2 Ap~'-~Fexp(--~)- I]--~ }+ -~ [cosh(~)- l I(OC' + OC2~ 
II\~Ol [ ~OL k J\Ty~ Ty2I.II 

(LY °, l  Oh F2C' sinh(-~)+ (~)2 ~][exp(-~)- I]- ~[2C2 sinh(-~)+ ,co] 3y2] 
ay, L 

x [ e x p ( - - ~ ) - l ] +  U,, [51] 

where h = h(yl, Y2) is given by [36]. 
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Substitution of the expressions for u~ and u2 given by [48] into [39] and the Y3 integration, subject 
to the continuity of the velocity on the layer/fluid interface [45], yields 

+\c3y, Oy2/[ ; 

o,,( o,, ) o,,,,, + ) 
0 y  I ½ Y l N  + AIY3 + BI - ~y~ 2y~ B~ + w, ,  I521 

where Ai and B~ (i = 1, 2) are given by [49]. 
In order to compute the pressure, it is necessary to obtain the expressions for the velocities in 

the porous layer near the surface IV'. As before, we solve [37]-[42] subject to the boundary 
conditions [43]-[46] near the surface IV' and obtain 

,~ 2 O) 
dp I2E(h)sinhI~(~ _ ~ ) ] +  ( ~ ) { e x p I _ ~ (  ¢ _ ~ ) ] _  1}1, tii =~y  

2 ~ (D _ i  1 

exp - ~ - - 1 - ~Yl t~! - --~Y2 u2- + U2 

and 

C i = F(h) ~iYi' 

where 

T(h) = E(h) + F (h), 

h is the function of y~ and Y2 given by [43] and 

[53] 

[54] 

[55] 

~ ( ' )  ( ' ) r  ( " )  ] "  co ~, 2 co _1) 2+ _ + Q }  

! 
E(h) =/~co [561 

Since u3 = z73 on the bound of the porous layer, from [53] and [54], after simplifications, it follows 
that 

div,[~(h) V, pl = U2 - UI, [57] 

UMF 18/5--H 



746 

where 

Y. S O L O M E N T S E V  et al. 

73 _ ~  
• (h) = - ~  [(h - y) 3 - 73] + ~-5 exp + 1 - 0.5G[(h - 7) 2 - 72] 

P(Yl,Y2) is an unknown pressure; h(y~,y2) is defined by [36] and • is defined as a function of h 
and hence may be written as the function of y~ and Y2. All derivatives are taken with respect to 
the variables y~ and Y2. 

It may be shown that the above result reduces to those given by Cox (1974) in the limit as the 
thickness of  the porous layer approaches zero. In this case, the function ~(h)  reduces to -h3/12.  

Following Cox (1974), the expression for h may be written in the form 

h = 1 + f91y ,  [58] 

where y is the column vector 

N 1,91 
Y= Y2 

and f is its transpose. Then 91 is the matrix 

f" 1 cos20 sin20 sinOcosO{1 1~]  

[ ~  + ~ - 2  + 2-Sz - 2 \ ~ -  S 2 J /  [60] 
91-- |sinOcosO{1 1") 1 sin20 c o s 2 0 /  

L J 
Defining 2t and 22 as the eigenvalues, the expression for h [58] may be transformed into the form 

~2 ~2 [61] h = l + 21yl + 22Y2. 

The variables 33~ and j)2 are defined with respect to the coordinate system where axes are chosen 
in the directions of  the normalized eigenvectors of 9t. 

Compute the function p =p(y~, Yz) as a function of h. In this case, [57] takes the form 

 d(d) d (42,33~ +422332)~--/~ ~ P  +(22,  + 2 2 2 ) ~ p  = U I -  U2. [62] 

Note that if ~(d/dh)p = const, then p satisfies [62] and hence 

d 
(22~ + 222)4 ~-hp = U~ - U:. [63] 

The solution to [62] which satisfies the boundary condition [31] is 

U ~ - U I  f. ~ dh [64] 
P - 2(~, ~- L )  * (h )"  

The force F exerted by the fluid on W is given by 

[ aunjds ' [65] F,= 
d W 

where n is defined as the unit normal to the surface W from solid to fluid; aij is the stress tensor 
corresponding to u and p;  and dS is an element of area of  the surface. For  small values of 
r = (331 +332) ~/2, n and dS may be written as terms of order O(1) with respect to E in the form 

n = (0, 0, 1), dS = d33, dP2. [66] 
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are made so that [61] takes the form 

It may be also shown that the stress tensor of  order O(1) is diagonal and the components p#: 
p# = p ( i  = 1, 2, 3). 

For the evaluation of  the integral [65] the surface W is divided into two areas S o and ~o, where 
the area S o is part of  W for which the vector y given by [65] satisfies the relation 

p2 
2mill 2 .-~ 22,~ 2 ~ - -  [67] £ 2 '  

where p is a small arbitrary parameter. 
In order to integrate [65], the substitutions 

r COS ~b r Cos , / g ,  [68] 

and [67] may be written in the form 

h = 1 + r 2 [69] 

r ~< P-. [70] 
£ 

Since p is an arbitrary small parameter and E-+0 when the distance between the surfaces tends to 
zero, it follows that 

0.%< r .% oo. [71] 

The force F [65] may be written as 

fs dS + fz dS. [72] 

The second integral in [72] tends to a finite limit as the surfaces approach, because the parameter 
p is independent of  e. The first integral may be evaluated by expressing all quantities in r and 
variables. Performing the ~b integration one finds 

F, = F2 = 0,  

£- 2n pr dr. [731 

Since h = 1 + r ~, substituting [64] into [73] one obtains 

n(u2 - u,)  ~,~ (h - l) dh 
F3 = 2(2, + 22) 2 v / - ~  "" ~-(~-) . [74] 

Converting to dimensional variables, the force acting on the surface of  the particle may be written 
in the form 

~" = (o, o, ~ ) ,  

~r = , in(u~'  - u * ) L '  ~,oo (h - 1) dh 

2a(2,  J, ' 
[75] 

where O(h) is given by [57] and 21 and 2 2 a r e  the eigenvalues of  the matrix 91 given by [60]. Note 
the integrals in the right-hand sides of  [74] and [74] do not depend on the geometrical parameters 
of  the system considered. This fact allows one to reduce use of  the model developed for systems 
of  different geometry to calculation of  the eigenvalues 2m, 22. It is easy to see, that in the case of  
two spheres of  radii ~ and g, respectively, 

2, = 2 2 =  2 - + ~  . [76] 
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Consideration of two crossed cylinders leads to 

L( 2 2) [ Z 2 Z2f2 2 x~2-] ./2 
2 , = 2 2 = - ~  - + ~  + 1-~--ff~sin20 + Y ~ + 3 ) ]  ' 

where ~ and $ are the cylinder radii and 0 is the angle between the cylinder axes. 
In the case when the thickness of the gel layer tends to zero the result reduces to that obtained 

by Cox (1974). However, the solution obtained has no singularity at a point of contact when the 
gel layer has finite thickness. 

DISCUSSION OF RESULTS 

The theory considered was applied to obtain the force acting on two particles covered with a 
porous layer which move at a finite relative velocity along the line of minimal separation. The fluid 
flow in the porous layer was modeled by the Brinkman equations. The force is found as the leading 
term of an asymptotic expansion valid when the gap between the particles is much less than 
the smallest principal radius of its curvature. The solution has no singularity when the surfaces 
are almost in contact (i.e. the gel layers are touching), which differs from the case of smooth 
surfaces. If the thickness of the porous layer tends to zero, the results reduce to those given by 
Cox (1974). 

The hydrodynamic interaction of two particles covered with a gel layer compares with the 
interaction of smooth particles. The force acting on the smooth particles is calculated by Cox's 
formula. There are two ways of comparison: case 1 (figure 2A) the smooth particle radius is 
equal to the solid surface radius of the particle covered with the gel layer (e.g. the gel layer is formed 
by the adsorption of polymer); case 2 (figure 2B) the smooth particle radius is equal to the 
solid surface radius plus the gel layer thickness together (e.g. the gel layer is formed by dissolution 
of the particle's surface). For either case the force is expressed by the coefficient F0 units, defined 
by 

~ ( u ~  - U t  )L  
F0= 

(,l~ + ,h)x/~,,h" 
Some calculated results are shown in figures 3-6 for various values of the porosity and thickness 
of the gel layer (curves 1 and 3 show the force acting on the particles covered with the gel layer 
in cases 1 and 2, respectively; curve 2 shows the force acting on the surface of the smooth particle). 
It is seen that the dissolution of the particle surface always decreases the force in comparison with 
smooth particles; on the contrary, the adsorption of polymer on the particle surface always 
increases the acting force. With increasing distance between the particles, the force of interaction 
decreases quickly. Increasing the gel layer thickness leads to a decrease in the acting force value 
at the point of contact and accelerates the tendency of the force to zero with distance. The force 

(A) (B) 

Smooth Partlcle Partlcle wlth "adsorbed" Smooth Particle Particle with "dissolved" 
gel layer gel layer 

Figure 2(A). "Adsorbed" gel layers. (B) "Dissolved" gel layers. 
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Figure 3. Dependence of  relative force on the gap width. 
Porosity = 0.7,  thickness of  the gel layer = I nm. 
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Figu re  4. Dependence of  relative force on the gap width. 
Porosity = 0.7,  thickness of  the gel layer = 8 nm. 

of the hydrodynamic interactions approaches that of Cox for high porosities. Note that in two 
cases mentioned above the parameter a is the distance between the solid surfaces (case 1) and the 
distance between the gel layers (case 2). This fact was taken into account in calculations according 
to [75]. 

Analysis of  the hydrodynamic interactions of two particles covered with a gel layer 
shows that utilization of Cox's formula for the interpretation of interaction force 
measurements and determination of the gel layer thickness in this way may lead to significant 
errors. 

0.6 

o 

LLO. 4 

0.2 

0.0 I I I I ! f 

0 2 4 6 8 10 12 

F i g u r e  5. Dependence of  relative force on the g a p  wid th .  
Porosity -- 0.9, thickness of  the gel layer = I nm. 

0.6 

kl-°0.4 

Is_ 

0.2 

0.0 ,~'-r I I I 

0 1 2 ,5 4. 

F i g u r e  6. Dependence of  relative force on the gap width. 
Porosity = 0.9,  th i ckness  of the gel layer --  8 ~m.  
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